3.1.87 \(\int \frac {(a+b x+c x^2)^{3/2}}{d-f x^2} \, dx\) [87]

Optimal. Leaf size=315 \[ -\frac {(5 b+2 c x) \sqrt {a+b x+c x^2}}{4 f}-\frac {\left (8 c^2 d+3 b^2 f+12 a c f\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 \sqrt {c} f^2}+\frac {\left (c d-b \sqrt {d} \sqrt {f}+a f\right )^{3/2} \tanh ^{-1}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {d} f^2}+\frac {\left (c d+b \sqrt {d} \sqrt {f}+a f\right )^{3/2} \tanh ^{-1}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {d} f^2} \]

[Out]

-1/8*(12*a*c*f+3*b^2*f+8*c^2*d)*arctanh(1/2*(2*c*x+b)/c^(1/2)/(c*x^2+b*x+a)^(1/2))/f^2/c^(1/2)+1/2*arctanh(1/2
*(b*d^(1/2)-2*a*f^(1/2)+x*(2*c*d^(1/2)-b*f^(1/2)))/(c*x^2+b*x+a)^(1/2)/(c*d+a*f-b*d^(1/2)*f^(1/2))^(1/2))*(c*d
+a*f-b*d^(1/2)*f^(1/2))^(3/2)/f^2/d^(1/2)+1/2*arctanh(1/2*(b*d^(1/2)+2*a*f^(1/2)+x*(2*c*d^(1/2)+b*f^(1/2)))/(c
*x^2+b*x+a)^(1/2)/(c*d+a*f+b*d^(1/2)*f^(1/2))^(1/2))*(c*d+a*f+b*d^(1/2)*f^(1/2))^(3/2)/f^2/d^(1/2)-1/4*(2*c*x+
5*b)*(c*x^2+b*x+a)^(1/2)/f

________________________________________________________________________________________

Rubi [A]
time = 0.32, antiderivative size = 315, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {992, 1092, 635, 212, 1047, 738} \begin {gather*} -\frac {\left (12 a c f+3 b^2 f+8 c^2 d\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 \sqrt {c} f^2}+\frac {\left (a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d\right )^{3/2} \tanh ^{-1}\left (\frac {-2 a \sqrt {f}+x \left (2 c \sqrt {d}-b \sqrt {f}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}\right )}{2 \sqrt {d} f^2}+\frac {\left (a f+b \sqrt {d} \sqrt {f}+c d\right )^{3/2} \tanh ^{-1}\left (\frac {2 a \sqrt {f}+x \left (b \sqrt {f}+2 c \sqrt {d}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}\right )}{2 \sqrt {d} f^2}-\frac {(5 b+2 c x) \sqrt {a+b x+c x^2}}{4 f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x + c*x^2)^(3/2)/(d - f*x^2),x]

[Out]

-1/4*((5*b + 2*c*x)*Sqrt[a + b*x + c*x^2])/f - ((8*c^2*d + 3*b^2*f + 12*a*c*f)*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*
Sqrt[a + b*x + c*x^2])])/(8*Sqrt[c]*f^2) + ((c*d - b*Sqrt[d]*Sqrt[f] + a*f)^(3/2)*ArcTanh[(b*Sqrt[d] - 2*a*Sqr
t[f] + (2*c*Sqrt[d] - b*Sqrt[f])*x)/(2*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*Sqrt[d]
*f^2) + ((c*d + b*Sqrt[d]*Sqrt[f] + a*f)^(3/2)*ArcTanh[(b*Sqrt[d] + 2*a*Sqrt[f] + (2*c*Sqrt[d] + b*Sqrt[f])*x)
/(2*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*Sqrt[d]*f^2)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 992

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_.) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(b*(3*p + 2*q) + 2
*c*(p + q)*x)*(a + b*x + c*x^2)^(p - 1)*((d + f*x^2)^(q + 1)/(2*f*(p + q)*(2*p + 2*q + 1))), x] - Dist[1/(2*f*
(p + q)*(2*p + 2*q + 1)), Int[(a + b*x + c*x^2)^(p - 2)*(d + f*x^2)^q*Simp[b^2*d*(p - 1)*(2*p + q) - (p + q)*(
b^2*d*(1 - p) - 2*a*(c*d - a*f*(2*p + 2*q + 1))) - (2*b*(c*d - a*f)*(1 - p)*(2*p + q) - 2*(p + q)*b*(2*c*d*(2*
p + q) - (c*d + a*f)*(2*p + 2*q + 1)))*x + (b^2*f*p*(1 - p) + 2*c*(p + q)*(c*d*(2*p - 1) - a*f*(4*p + 2*q - 1)
))*x^2, x], x], x] /; FreeQ[{a, b, c, d, f, q}, x] && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 1] && NeQ[p + q, 0] && NeQ
[2*p + 2*q + 1, 0] &&  !IGtQ[p, 0] &&  !IGtQ[q, 0]

Rule 1047

Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
 = Rt[(-a)*c, 2]}, Dist[h/2 + c*(g/(2*q)), Int[1/((-q + c*x)*Sqrt[d + e*x + f*x^2]), x], x] + Dist[h/2 - c*(g/
(2*q)), Int[1/((q + c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g, h}, x] && NeQ[e^2 - 4*d*f
, 0] && PosQ[(-a)*c]

Rule 1092

Int[((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Sym
bol] :> Dist[C/c, Int[1/Sqrt[d + e*x + f*x^2], x], x] + Dist[1/c, Int[(A*c - a*C + B*c*x)/((a + c*x^2)*Sqrt[d
+ e*x + f*x^2]), x], x] /; FreeQ[{a, c, d, e, f, A, B, C}, x] && NeQ[e^2 - 4*d*f, 0]

Rubi steps

\begin {align*} \int \frac {\left (a+b x+c x^2\right )^{3/2}}{d-f x^2} \, dx &=-\frac {(5 b+2 c x) \sqrt {a+b x+c x^2}}{4 f}+\frac {\int \frac {\frac {1}{4} \left (5 b^2 d+4 a (c d+2 a f)\right )+4 b (c d+a f) x+\frac {1}{4} \left (8 c^2 d+3 b^2 f+12 a c f\right ) x^2}{\sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx}{2 f}\\ &=-\frac {(5 b+2 c x) \sqrt {a+b x+c x^2}}{4 f}-\frac {\int \frac {-\frac {1}{4} d \left (8 c^2 d+3 b^2 f+12 a c f\right )-\frac {1}{4} f \left (5 b^2 d+4 a (c d+2 a f)\right )-4 b f (c d+a f) x}{\sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx}{2 f^2}-\frac {\left (8 c^2 d+3 b^2 f+12 a c f\right ) \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{8 f^2}\\ &=-\frac {(5 b+2 c x) \sqrt {a+b x+c x^2}}{4 f}-\frac {\left (c d-b \sqrt {d} \sqrt {f}+a f\right )^2 \int \frac {1}{\left (-\sqrt {d} \sqrt {f}-f x\right ) \sqrt {a+b x+c x^2}} \, dx}{2 \sqrt {d} f^{3/2}}+\frac {\left (c d+b \sqrt {d} \sqrt {f}+a f\right )^2 \int \frac {1}{\left (\sqrt {d} \sqrt {f}-f x\right ) \sqrt {a+b x+c x^2}} \, dx}{2 \sqrt {d} f^{3/2}}-\frac {\left (8 c^2 d+3 b^2 f+12 a c f\right ) \text {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{4 f^2}\\ &=-\frac {(5 b+2 c x) \sqrt {a+b x+c x^2}}{4 f}-\frac {\left (8 c^2 d+3 b^2 f+12 a c f\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 \sqrt {c} f^2}+\frac {\left (c d-b \sqrt {d} \sqrt {f}+a f\right )^2 \text {Subst}\left (\int \frac {1}{4 c d f-4 b \sqrt {d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac {b \sqrt {d} \sqrt {f}-2 a f-\left (-2 c \sqrt {d} \sqrt {f}+b f\right ) x}{\sqrt {a+b x+c x^2}}\right )}{\sqrt {d} f^{3/2}}-\frac {\left (c d+b \sqrt {d} \sqrt {f}+a f\right )^2 \text {Subst}\left (\int \frac {1}{4 c d f+4 b \sqrt {d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac {-b \sqrt {d} \sqrt {f}-2 a f-\left (2 c \sqrt {d} \sqrt {f}+b f\right ) x}{\sqrt {a+b x+c x^2}}\right )}{\sqrt {d} f^{3/2}}\\ &=-\frac {(5 b+2 c x) \sqrt {a+b x+c x^2}}{4 f}-\frac {\left (8 c^2 d+3 b^2 f+12 a c f\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 \sqrt {c} f^2}+\frac {\left (c d-b \sqrt {d} \sqrt {f}+a f\right )^{3/2} \tanh ^{-1}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {d} f^2}+\frac {\left (c d+b \sqrt {d} \sqrt {f}+a f\right )^{3/2} \tanh ^{-1}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {d} f^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.75, size = 524, normalized size = 1.66 \begin {gather*} \frac {-2 \sqrt {c} f (5 b+2 c x) \sqrt {a+x (b+c x)}+\left (8 c^2 d+3 b^2 f+12 a c f\right ) \log \left (b+2 c x-2 \sqrt {c} \sqrt {a+x (b+c x)}\right )-4 \sqrt {c} \text {RootSum}\left [b^2 d-a^2 f-4 b \sqrt {c} d \text {$\#$1}+4 c d \text {$\#$1}^2+2 a f \text {$\#$1}^2-f \text {$\#$1}^4\&,\frac {b c^2 d^2 \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )+b^3 d f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-a^2 b f^2 \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-2 c^{5/2} d^2 \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-2 b^2 \sqrt {c} d f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-4 a c^{3/2} d f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-2 a^2 \sqrt {c} f^2 \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}+2 b c d f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2+2 a b f^2 \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{b \sqrt {c} d-2 c d \text {$\#$1}-a f \text {$\#$1}+f \text {$\#$1}^3}\&\right ]}{8 \sqrt {c} f^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x + c*x^2)^(3/2)/(d - f*x^2),x]

[Out]

(-2*Sqrt[c]*f*(5*b + 2*c*x)*Sqrt[a + x*(b + c*x)] + (8*c^2*d + 3*b^2*f + 12*a*c*f)*Log[b + 2*c*x - 2*Sqrt[c]*S
qrt[a + x*(b + c*x)]] - 4*Sqrt[c]*RootSum[b^2*d - a^2*f - 4*b*Sqrt[c]*d*#1 + 4*c*d*#1^2 + 2*a*f*#1^2 - f*#1^4
& , (b*c^2*d^2*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] + b^3*d*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^
2] - #1] - a^2*b*f^2*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - 2*c^(5/2)*d^2*Log[-(Sqrt[c]*x) + Sqrt[a
+ b*x + c*x^2] - #1]*#1 - 2*b^2*Sqrt[c]*d*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1 - 4*a*c^(3/2)*d*
f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1 - 2*a^2*Sqrt[c]*f^2*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^
2] - #1]*#1 + 2*b*c*d*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1^2 + 2*a*b*f^2*Log[-(Sqrt[c]*x) + Sqr
t[a + b*x + c*x^2] - #1]*#1^2)/(b*Sqrt[c]*d - 2*c*d*#1 - a*f*#1 + f*#1^3) & ])/(8*Sqrt[c]*f^2)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1476\) vs. \(2(245)=490\).
time = 0.15, size = 1477, normalized size = 4.69

method result size
default \(\text {Expression too large to display}\) \(1477\)
risch \(\text {Expression too large to display}\) \(2314\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^(3/2)/(-f*x^2+d),x,method=_RETURNVERBOSE)

[Out]

1/2/(d*f)^(1/2)*(1/3*((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f*(-b*(d*f)^(1/2)+f
*a+c*d))^(3/2)+1/2/f*(-2*c*(d*f)^(1/2)+b*f)*(1/4*(2*c*(x+(d*f)^(1/2)/f)+1/f*(-2*c*(d*f)^(1/2)+b*f))/c*((x+(d*f
)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2)+1/8*(4*c/f*(-b
*(d*f)^(1/2)+f*a+c*d)-1/f^2*(-2*c*(d*f)^(1/2)+b*f)^2)/c^(3/2)*ln((1/2/f*(-2*c*(d*f)^(1/2)+b*f)+c*(x+(d*f)^(1/2
)/f))/c^(1/2)+((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f*(-b*(d*f)^(1/2)+f*a+c*d)
)^(1/2)))+1/f*(-b*(d*f)^(1/2)+f*a+c*d)*(((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/
f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2)+1/2/f*(-2*c*(d*f)^(1/2)+b*f)*ln((1/2/f*(-2*c*(d*f)^(1/2)+b*f)+c*(x+(d*f)^(1/
2)/f))/c^(1/2)+((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f*(-b*(d*f)^(1/2)+f*a+c*d
))^(1/2))/c^(1/2)-1/f*(-b*(d*f)^(1/2)+f*a+c*d)/(1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2)*ln((2/f*(-b*(d*f)^(1/2)+f*
a+c*d)+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+2*(1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2)*((x+(d*f)^(1/2)/f)^
2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2))/(x+(d*f)^(1/2)/f))))-1/2
/(d*f)^(1/2)*(1/3*((x-(d*f)^(1/2)/f)^2*c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+f*a+c*d)/f)^
(3/2)+1/2*(2*c*(d*f)^(1/2)+b*f)/f*(1/4*(2*c*(x-(d*f)^(1/2)/f)+(2*c*(d*f)^(1/2)+b*f)/f)/c*((x-(d*f)^(1/2)/f)^2*
c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)+1/8*(4*c*(b*(d*f)^(1/2)+f*a+c*d)/
f-(2*c*(d*f)^(1/2)+b*f)^2/f^2)/c^(3/2)*ln((1/2*(2*c*(d*f)^(1/2)+b*f)/f+c*(x-(d*f)^(1/2)/f))/c^(1/2)+((x-(d*f)^
(1/2)/f)^2*c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)))+(b*(d*f)^(1/2)+f*a+c
*d)/f*(((x-(d*f)^(1/2)/f)^2*c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)+1/2*(
2*c*(d*f)^(1/2)+b*f)/f*ln((1/2*(2*c*(d*f)^(1/2)+b*f)/f+c*(x-(d*f)^(1/2)/f))/c^(1/2)+((x-(d*f)^(1/2)/f)^2*c+(2*
c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2))/c^(1/2)-(b*(d*f)^(1/2)+f*a+c*d)/f/((b
*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)*ln((2*(b*(d*f)^(1/2)+f*a+c*d)/f+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+2*((b
*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)*((x-(d*f)^(1/2)/f)^2*c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)
+f*a+c*d)/f)^(1/2))/(x-(d*f)^(1/2)/f))))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(3/2)/(-f*x^2+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(((c*sqrt(4*d*f))/(2*f^2)>0)',
see `assume?

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(3/2)/(-f*x^2+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {a \sqrt {a + b x + c x^{2}}}{- d + f x^{2}}\, dx - \int \frac {b x \sqrt {a + b x + c x^{2}}}{- d + f x^{2}}\, dx - \int \frac {c x^{2} \sqrt {a + b x + c x^{2}}}{- d + f x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**(3/2)/(-f*x**2+d),x)

[Out]

-Integral(a*sqrt(a + b*x + c*x**2)/(-d + f*x**2), x) - Integral(b*x*sqrt(a + b*x + c*x**2)/(-d + f*x**2), x) -
 Integral(c*x**2*sqrt(a + b*x + c*x**2)/(-d + f*x**2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(3/2)/(-f*x^2+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Error: Bad Argument Type

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (c\,x^2+b\,x+a\right )}^{3/2}}{d-f\,x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x + c*x^2)^(3/2)/(d - f*x^2),x)

[Out]

int((a + b*x + c*x^2)^(3/2)/(d - f*x^2), x)

________________________________________________________________________________________